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Abstract

To quantitatively detect ethyl octanoate in Chinese liquor, Fourier-transform near-infrared 
(FT-NIR) spectroscopy was performed in the present work, with 162 Chinese liquor samples 
selected from Luoyang Dukang Distillery. The chemical values of ethyl octanoate were 
determined by gas chromatography (GC), and spectral data from 12,000 to 4000 cm-1 were 
collected. The calibration model was established with partial least squares (PLS) regression, 
and then validated using internal cross-validation. The predictability of the model was further 
confirmed by the validation set as external validation. After comparing the effects of the 
models set up with sample data under different pre-processing methods, the model was built 
within the spectral region of 6101.7 - 5449.8 cm-1; based on the SNV pre-processing method 
which was selected as the optimal model. The coefficient of determination (R2) for 
cross-validation of the model was 0.9507, and the corresponding root mean square errors of 
cross-validation (RMSECV) was 3.91 mg L-1. The R2 for external validation was 0.9537, and 
the root mean square errors of prediction (RMSEP) was 3.62 mg L-1. The results demonstrated 
that using NIR spectroscopy to determine ethyl octanoate in Chinese liquor is feasible and can 
achieve satisfactory results.
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Introduction

 Chinese liquor is a traditional spirit (Liu and 
Sun, 2018) distilled from sorghum, wheat, corn, rice, 
glutinous rice, and other grains; and goes through the 
processes of cooking, saccharifying, fermenting, 
distilling, storing, and blending. During liquor 
fermentation and distillation, a large number of flavour 
compounds including alcohols, acids, esters, phenols, 
ketones, acetals, nitrogenous compounds, and sulphur 
compounds are produced (Zheng et al., 2016). 
Although these compounds account for a small portion 
of liquor, they play an essential role in liquor flavour 
and quality. To produce high-quality liquor with 
appealing flavour and strong aroma, it is necessary to 
determine the most appropriate concentration ratio 
among these flavour compounds. Therefore, 
investigating flavour-producing substances plays a 
critical role in flavour type innovation and process 
improvement of liquor. Ethyl caproate is generally 
considered the main component of strong-aroma type 
liquor, and it works with ethyl butyrate, ethyl acetate, 
and ethyl lactate to form the four major esters of 
strong-aroma type liquor. Moreover, in the blending 
process of strong-aroma type liquor, the ratio of the 
four esters requires special attention for better 
coordination. With continuous development of modern 

technologies, more trace flavour compounds have been 
discovered in liquor, including ethyl octanoate. Ethyl 
octanoate plays a significant role in strong-aroma type 
liquor; its aroma intensity is much higher than that of 
ethyl acetate and ethyl lactate, and is second only to 
ethyl caproate. Therefore, it is important to achieve 
rapid determination of ethyl octanoate in Chinese liquor 
(Wang et al., 2014).
 A typical method for analysing flavour 
compounds in liquor is gas chromatography (GC) or 
its combination with other techniques, including stir 
bar sorption extraction (SBSE) coupled with gas 
chromatography-mass spectrometry (GC-MS) (Fan et 
al., 2011), gas chromatography-olfactometry (GC-O) 
and GC-MS (Fan et al., 2012; Gao et al., 2014), 
solid-phase micro extraction (SPME) and GC-MS 
(Wang et al., 2015), SBSE, thermal desorption system 
(TDS), and GC-MS (Niu et al., 2015), GC-flame 
photometric detection (FPD) (Niu et al., 2017), and 
headspace (HS)-SPME and GC-pulsed flame 
photometric detection (PFPD) (Sha et al., 2016). 
Although these methods are accurate and sensitive, the 
implementation procedures are cumbersome and 
time-consuming, and they cannot be applied to rapid 
detection of liquor in the liquor industry. To meet actual 
production needs, a simple and fast online analysis 
technology is required. In such a case, near-infrared 
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spectroscopy (NIRS) is a suitable choice.
 Near infrared spectroscopy is a rapid, 
convenient, non-destructive, and environmentally 
friendly technology, widely used for simultaneous 
detection of multiple components in the food industry 
(Adedipe et al., 2016; Bernhard et al., 2016; Zhong 
and Qin, 2016). NIRS has also greatly contributed to 
the alcoholic beverage industry, where it is applied for 
rapid determination of the parameters in the 
fermentation process of alcoholic beverages (Grassi 
et al., 2014; Wu et al., 2015a; 2015b), for classification 
and identification of liquor (Fei et al., 2012; Chen et 
al., 2014; Li et al., 2014), and for analyses of 
conventional physical and chemical indicators of 
liquor (Lorenzo et al., 2009; Martelovidal and 
Vázquez, 2014; Ye et al., 2014; Ouyang et al., 2015). 
However, there have been few reports on the 
determination of ethyl octanoate in Chinese liquor by 
NIRS.
 In the present work, Dukang liquor, a 
strong-aroma type liquor, was selected to study the 
content of ethyl octanoate, which was determined by 
GC-flame ionisation detector (FID). Then, the 
near-infrared (NIR) spectrum of liquor was scanned 
and analysed, and the mathematical relationship 
between the chemical value and spectrum was 
established by the partial least squares (PLS) method. 
The feasibility of rapid determination of ethyl 
octanoate in liquor by NIRS was explored.

Materials and methods

Materials and chemicals
 A total of 162 Chinese liquor samples were 
obtained from Luoyang Dukang Holdings Ltd. (Henan 
province, China) as the original distillate. The samples 
were collected from different fermentation pools, and 
at different distillation phases in the liquor production 
line. All liquor samples were stored at 4°C until 
analysis. Ethyl octanoate of the GC standard (purity 
≥ 99%) was purchased from Aladdin Bio-Chem 
Technology Co., Ltd (Shanghai, China), and absolute 
ethanol was from Kermel Chemical Reagent Co., Ltd 
(Tianjin, China).
 Ethyl octanoate (0.1 mL) was transferred into 
a 100 mL volumetric flask and diluted with 600 mL 
L-1 ethanol to obtain standard stock solution (1 mL 
L-1). A volume of 10 mL of calibration standards with 
600 mL L-1 ethanol was prepared by the dilution of 
0.1, 0.25, 0.5, 1, 2, and 3 mL standard stock solution 
at six gradient concentrations, respectively.

Gas chromatography
 The GC analysis was carried out using an 

Agilent 7890A gas chromatography system, equipped 
with a flame ionisation detector (Agilent 
Technologies, Inc., USA). Separation was performed 
with a silica capillary column AT.LZP-930 (25 m × 
0.53 mm × 1 μm; Lanzhou Institute of Chemical 
Physics, Chinese Academy of Sciences). Nitrogen 
(99.999% purity) was employed as the carrier gas, and 
maintained at a flow rate of 30 mL min-1, by being 
injected for a volume of 1 μL with a split ratio of 10:1. 
The injector and detector temperatures were set at 220 
and 250°C, respectively. The chromatographic 
program was set at 75°C, held for 3 min, and then 
raised to 210°C at a step of 10°C min-1. The total GC 
run time was 16.5 min. 
 
NIR spectrum acquisition
 All spectra from the liquor were acquired 
using a Fourier transform near-infrared (FT-NIR) 
spectrometer VECTOR33 (Bruker Corporation, 
Germany). Before measurements, the FT-NIR 
instrument was pre-heated for 30 min. After the 
instrument passed the test, air was used as the 
reference, and the quartz cuvette was selected with 
the optical path of 1 mm, and background scanning 
was carried out at first. Based on the characteristics 
of the liquor samples, the transmission mode was 
used to collect the spectra. The ambient temperature 
was equilibrated at 25 ± 2°C for spectrum 
acquisition. The spectral scanning range was 12,000 
- 4000 cm-1, the instrument resolution was 8 cm-1, and 
each sample was obtained by an average of 32 scans. 
The sample spectra were analysed using OPUS 8.1 
software (Bruker Optics Inc., Germany).

Spectrum processing
 Raw spectra of the samples should be 
pre-processed to reduce external interference, 
minimise baseline variation, and increase spectral 
differences. In order to achieve the highest accuracy 
and reliability of the prediction model, different 
pre-processing methods were applied, including 
straight line subtraction (SLS), standard normal 
variate (SNV), min-max normalisation (MMN), 
multiplicative scatter correction (MSC), first 
derivative (D1), and second derivative (D2) (Egidio 
et al., 2010). Besides, spectral region selection for 
optimal modelling has a profound impact on the 
quality of the multivariate calibration model. The 
NIR full-spectra data have a large volume and 
contain much interference information unrelated to 
the prediction target, and the characteristic spectral 
region needs to be filtered. The OPUS software has a 
set of five NIR frequency regions for the optimised 
models: 9400 - 7500, 7500 - 6100, 6100 - 5450, 5450 
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- 4600, and 4600 - 4250 cm-1. By combining these 
pre-processing methods and spectral regions, the 
optimal band and best pre-processing method can be 
identified (Callado et al., 2018).

Establishment of the models and evaluation 
standards
 Partial least squares (PLS) regression was 
utilised to establish a mathematical model for 
predicting the content of ethyl octanoate. The PLS 
regression is based on simultaneous decomposition 
of the spectral matrix (X) and concentration matrix 
(Y), which gradually extracts the components 
(usually referred to as PLS factors) from the data, and 
verifies the significance of the model until it meets 
the requirements. The PLS regression algorithm can 
use part or all of the spectra as variables to establish 
a quantitative analysis model of NIRS. PLS 
regression is the most commonly used multivariate 
calibration method in quantitative analysis, which 
overcomes the collinearity, band overlap, data 
interference, and other common problems. All 
samples were randomly divided into a calibration set 
and validation set at a ratio of 3:1. The calibration 
model was established using samples in the 
calibration set, where internal cross-validation was 
performed, and then external verification was 
performed with samples in the validation set. The 
optimal model was determined based on indicators 
such as the coefficient of determination (R2), root 
mean square errors of cross-validation (RMSECV), 
and root mean square errors of prediction (RMSEP). 
A good model should have lower RMSECV and 
RMSEP, and higher R2, with a small disparity 
between RMSECV and RMSEP (Aleixandre-Tudo et 
al., 2018). R2, RMSECV, and RMSEP were 
calculated using Eq.1, Eq.2 and Eq.3, respectively:

             (Eq. 1)

where, n = number of samples; yi = reference 
measurement value of sample i; yi = predicted value 
of sample i; and y = mean of the reference 
measurement values.

             (Eq. 2)

 

where, n = number of samples in the calibration set; 
yi = reference measurement value of sample i; and yi 
= predicted value of sample i.

             (Eq. 3)

where, n = number of samples in the validation set; yi 
= reference measurement value of sample i; and yi = 
predicted value of sample i.

Results and discussion

Chemical analysis
 The 162 liquor samples were analysed by 
GC-FID, and the analysis results of the distribution 
of the ethyl octanoate content in liquor are shown in 
Table 1. Since the liquor samples were from different 
fermentation pools, the ethyl octanoate content in the 
samples covered a relatively wide range. The range 
of the validation set was included in the larger range 
of the calibration set. In addition, different 
concentrations of ethyl octanoate were evenly 
distributed in the two data set, which was suitable for 
building a good NIR model.

NIR spectra of Chinese liquor
 The original spectra of the liquor samples are 
shown in Figure 1(A). There were a total of 2025 
variables (data points) with the wavenumbers 
ranging from 12,000 to 4000 cm-1. The spectral curve 
could be explained by the overtones of different 
functional groups in the samples. The spectral 
changes of all the samples were basically the same, 
and no abnormal values could be found with naked 
eyes. Although PLS could tolerate full-band 
modelling, the models’ short-wavelength regions 
were relatively flat with no sufficient spectral 
information. If an excessively wide band range is 
selected, it contains much redundant information. 
This will damage the performance of the model, as it 
will increase the calculation time, and even reduce 
the prediction effect of the model. Therefore, 
avoiding short-wavelength regions is recommended 
for spectral region selection. The spectra had two 
large absorption bands at 6896 and 5128 cm-1, which 
were ascribed to the O-H first overtone and O-H 

Subset Number of 
sample Range Mean SD 

Calibration set 121 15.50 - 89.00 56.13 17.68 

Validation set 41 24.16 - 88.83 54.29 17.05 

 1 

Table 1. Ethyl octanoate content in calibration and validation sets (mg L-1).

SD: standard deviation.



202 Dong, X., et al./IFRJ 28(1) : 199 - 206

combination band in water molecules, respectively. 
There was also a small absorption band at 10,416 
cm-1, which was related to the O-H second overtone 
(Chu et al., 2014; Wu et al., 2015c). In order to 
obtain a model with high stability and accuracy, this 
segment needs to be avoided in the process of 
selecting the optimal spectral regions. The absorption 
bands corresponding to ethyl octanoate appeared at 
5900 cm-1, correlated with the first overtone of the 
methyl (-CH3) group; while at 5770 and 5670 cm-1, it 
is associated with the first overtone of the methylene 
(-CH2) group (Han et al., 2016). Therefore, this 
spectral region should be taken into consideration for 
establishing the NIR model of ethyl octanoate. 
Figure 1(B) illustrates the original spectra 
pre-processed with SNV, with a selected spectral 
region from 6101.7 to 5449.8 cm-1, which removed 
irrelevant information, and improved the operation 
efficiency and model stability.

Calibration and validation using NIR spectroscopy
 Based on spectral variables and chemical 
values, the NIR mathematical model was established 
using PLS regression. The optimal pre-processing 
method and optimal spectral regions were selected 
based on the "optimisation function" of the OPUS 
software. Table 2 lists the effects of eight models 
built with different pre-processing methods and 
varied spectral regions. It can be seen from the table 
that most models were set up in the spectral region of 
6101.7 - 5449.8 cm-1. This is consistent with the 
above NIR spectrum analysis results, which showed 
that 6101.7 - 5449.8 cm-1 might be the characteristic 
spectral region of the ethyl octanoate model, and 
could achieve good results by directly using the 
original spectrum variables (none pre-processing) to 
participate in modelling. The model built after 
pre-processing by SNV, MSC, and MMN could 
achieve better evaluation results than the original 
spectrum model, because these pre-processing 
methods could eliminate spectral differences 
between samples caused by scattering. However, the 
modelling effect after derivative pre-processing (D1 
or D2 pre-processing) was not so good as the effect 
without pre-processing, as it might be attributed to 
signals that were not amplified, but spectral noises 
increased after derivative pre-processing. By 
comparison, the pre-processing method selected in 
the final modelling was SNV, and the optimal 
spectral region was 6101.7 - 5449.8 cm-1.
 The number of factors that participated in 
regression should be properly selected for 
constructing a PLS model. If there are too many or 
too few PLS factors, the calibration model may not 
accurately depict the behaviours of the components. 
The optimal number of PLS factors for each model 
was determined by internal cross-validation using the 
calibration model. A total of 20 PLS factors were 
introduced into the PLS model for factor 
optimisation. Figure 2 presents how R2 and 
RMSECV of the calibration model built with the 
SNV pre-processing method interact with increasing 
PLS factors. The most ideal curve is that RMSECV 
first decreases rapidly with the increase in the 
number of PLS factors, the minimum value is 
reached, and then RMSECV increases slightly. 
Usually, the number of PLS factors with the smallest 
RMSECV is chosen. The relationship between R2 
and the number of PLS factors was just opposite to 
the relationship between RMSECV and the number 
of PLS factors (reverse curve). The ideal situation 
was to increase it with the increase in the number of 
PLS factors at first, and then gradually decrease after 
the maximum value appeared (Moser et al., 2015). 
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Figure 1. NIR spectra of all liquor samples. (A) Original 
spectra; (B) Spectra pre-processed with SNV. 1: second 
overtone stretch of C-H; 2: O-H first overtone; 3: first 
overtone stretch of C-H; 4: O-H combination band; 5: first 
overtone of -CH3; 6 and 7: first overtone of -CH2.
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Therefore, it can be seen from Figure 2 that the 
optimal number of PLS factors should be set as 11 in 
the calibration model with the SNV pre-processing 
method.
 To illustrate the robustness of the model, the 
predicted values were plotted against the measured 
values. Figure 3(A) reveals the correlation between 
the predicted values and measured values obtained 
after the calibration set samples were internally 
cross-validated. It can be observed that the 
calibration set samples were evenly distributed on 
both sides of the regression line, indicating that the 
NIR spectra of ethyl octanoate had a strong linear 
correlation with its chemical values. R2 of the model 
was 0.9507, and RMSECV was 3.91 mg L-1. These 
results showed that the mathematical statistics of the 
model reached the most expected value, with R2 

Pre-processing 
method Spectral region Number of 

PLS factor 
Calibration set Validation set 

R2 RMSECV R2 RMSEP 

None 6101.7 - 5449.8 17 0.9397 4.32 0.9475 3.86 

SNV 6101.7 - 5449.8 11 0.9507 3.91 0.9537 3.62 

MSC 6101.7 - 5449.8 11 0.9496 3.95 0.9525 3.66 

MMN 6101.7 - 5449.8 11 0.9492 3.97 0.9520 3.69 

SLS 7501.7 - 5449.8 16 0.9124 3.38 0.9421 4.05 

D1 6101.7 - 5449.8 16 0.9388 4.35 0.9197 4.77 

D2 7501.7 - 5449.8 15 0.8592 6.61 0.9001 5.32 

D1+SNV 
9403.2 - 7497.9 

14 0.8956 5.69 0.9177 4.83 
6101.7 - 5449.8 

 

Table 2. Results of NIR models with different pre-processing methods and spectral regions.

SNV: standard normal variate; MSC: multiplicative scatter correction; MMN: min-max normalisation; 
SLS: straight line subtraction; D1: first derivative; D2: second derivative.
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close to 1, and RMSECV being small. 
 The regression coefficients of the optimal 
PLS model for ethyl octanoate were plotted in Figure 
4. There were strong peaks and troughs for the 
selected effective wavenumbers (6101.7 - 5449.8 
cm-1). As can be seen, the correlation of the chemical 
values measured by GC-FID with those estimated for 
ethyl octanoate by the calibration model was 
excellent. It was found that a high regression 
coefficient was observed at the wavenumber of 5900 
cm-1, which might be linked to the first overtone of 
-CH3, while the wavenumbers of 5770 and 5670 cm-1 
could be linked to the first overtone of -CH2. These 
conclusions are consistent with the analysis results of 
the original spectra of the liquor samples. The results 
demonstrated that NIR spectroscopy provided a good 
prediction model for the ethyl octanoate content in 
Chinese liquor samples.

 After the calibration model was established, 
external validation by the validation set was required 
to ensure the applicability of the model. Figure 3(B) 
shows the correlation of the predicted value with the 
measured value by external validation. R2 of the 
validation set was 0.9537, and RMSEP was 3.62 mg 
L-1. The correlation and deviation between the NIRS 
results in of all the samples, and the results of the 
reference methods met the reproducibility 
requirements. The predicted value was basically 
consistent with the chemical value measured by 
GC-FID, and the prediction effect of the model was 
satisfactory, which could meet the test requirements 
in the production of the liquor industry.

Conclusion

 In the present work, 162 Chinese liquor 

samples were scanned by FT-NIR spectroscopy, and 
the contents of ethyl octanoate were determined by 
GC-FID to establish a NIR model for rapid detection 
of ethyl octanoate in Chinese liquor. The experimen-
tal results confirmed the FT-NIR capability to predict 
the content of ethyl octanoate in Chinese liquor. 
When compared with traditional GC methods, the 
NIR technique is a non-destructive and rapid method 
with no need for previous treatment of samples, and 
having no contamination issues. It is an ideal rapid 
detection technology suitable for online quality 
control of industrial liquor production.
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